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LETTER TO THE EDITOR 

On one approach to an electromagnetic diffraction problem in 
a wedge shaped region 

M A Lyalinov 
Department of Mathematid Physics, Institute of Physics, University of St Petemburg, 
198904, Russia 

Received 17 January 1994 

Abstract. An electromagnetic diffraction problem in a wedge shaped region is reduced to 
a system of coupled functional equations by means of Sommerfeld integrals. Anisohmpic 
impedance boundary conditions are satisfied on the wedge's faces. This system of functional 
equations is solved by regular permrbation method. It is shown thaI for weak anisokopy 
the solution is presented by conveqing series which are N e u m  recunent series for linear 
equations with conuactjng operators. In a general case, the problem is reduced to linear equations 
with compact operators. The wave field asymptotic is computed for the region outside the vicinity 
of the edge of the wedge. 

The problem of diffraction by a perfectly conducting wedge was solved in classical works 
of Sommerfeld. Maliuzhinets (1959) studied diffraction by imperfectly conducting wedges 
and proposed re,@= solving procedure via reduction to functional equations which are 
equivalent to scalar Riemann problem for analytic functions'(Senior 1959, Wdliams 1959). 
Recently specific interest to diffraction by coated wedges and smooth surfaces has arisen due 
to applications of such models in radiophysics and acoustics (Tuzhilin 1973, Bernard 1987, 
Senior 1992, Buldyrev and Ljalinov 1992). We study the problem of diffraction by a wedge 
with anisotropic face impedances (figure 1). It cannot be solved exactly in the.general case, 
since it is equivalent to matrix Riemann problem for analytic vectors. However, we develop 
an effective approach to the problem which can also be applied in different problems in 
wedge shaped regions. Therefore, we study this problem as a simple non-trivial example 
of applying the proposed approach which has more general meaning for the investigation 
of the wave field in wedge shaped regions. 

Let harmonic elechomagnetic plane wave with e-'" time dependence, which is 
suppressed in this letter, 

E: = Eg exp(--ikp cos(@ - $00)) If: = Ef exp(-ikp cos(@ - $0)) (1) 

be incident on a wedge with anisotropic impedance boundary conditions (Kurushin et a1 
1975) 
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Figure 1. Diffraclion of a plane wave by a wedge. 

where cylindrical coordinates (p .  (p, z) are introduced, and z axis directed along the edge 
(figure 1). The signs (i) in (2) correspond to (p = i$, respectively, and matrix 
A = {a&=, is the matrix of surface impedances which are computed via dielectric and 
magnetic constants of the anisotropic coatings (Kurushin eta[ 1975). The components E,, 
Hz are independent on z coordinate and can be determined as the solutions of stationary 
wave equations. 

AE,  + kZEz = 0 AH, + kzH, = 0 k = ". (3) 

The other components of electromagnetic field are expressed explicitly from Maxwell 
equations, if E, and H, are known. We seek solutions of wave equations (3) in the form 
of Sommerfeld integrals 

E&, $4 = & s, g(a + d exp(-W c o s 4  da 

H z ( p ,  (p) = - '  f(a+(0)exp(-ikpcosa)da (4) 
1 
2ni Jc 

where y is well known Sommerfeld double loop contour (figure 2). We have to add 
Meixner condition at the edge ( p  + 0) and special condition at infinity which is more 
convenient formulated for spectral functions f, g. The representations (4), satisfying wave 
equations (4). are substituted into the boundary conditions (2), and, using Maliuzhinets 
theorem, we obtain 

s ina( f (a  h @) + f(-a 4)) + &f(a * @) - f ( - a  * @)) 

* 4 sina(g(a * 4) + g(-a 6)) + (g(a f 4) - g(-a * 4)) 

= k a $ & Z ( f ( a  @j- f ( - a  * 6)) 

= ~ : h a : , ~ s i n a ( g ( a * @ ) + g ( - r u * @ ) )  

(5) 

where we have voluntarily introduced the parameter A ( l i l  4 l), which must be equal 
to unit in resulting formulae. The meaning of the introduced mificial parameter is to 
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develop perturbation methods to treat the functional equations (5). The system (5) has to 
be supplemented by conditions for spectral functions which are as follows: 

- po),g(a) - Eg/(ol - w) are regular and bounded in the strip 
fi = [wC : IRe(a)l < +I. 

f(a) - 

Spectral function f ( a )  satisfies condition 

If(or) - f(;tiw)l < exp(-SIIm(a)l) 0 < 6 < 1 (6) 

when wefi, 1 h a ]  + 00. For the function g(a) we have the same inequality. 

It can be shown that f(-iw) = iH,(O, p)/2, g(-ico) = iEz(O, p)/2. So f(a), g(a) 
are regular and bounded in l? with fixed residues Er, Eg in the simple pole p = q,, to 
reproduce the incident plane wave E;, H i .  The initial problem is reduced to the problem 
(5). (6) for regular functions. Using conformal mapping, one can show that the system 
of functional equations is transformed to Riemann matrix problem with discontinuous 
coefficient. However, we shall use another approach to solving (S), which, of course, 
is equivalent to solving the Riemann problem for analytic functions. 

f(-iw) = -f(iw), g(-ico) = - g ( i w ) .  

Im 

Figure 2. Integration contour y and steepest descent paths y ~ .  

We introduce new unknown functions $(a), [(a) by equalities 

f(a) = %(a)&)$(d ~ g(u) = *&)u(or)t(a) (7) 

where a(a) = n/(2@)~os(n~~/2@)/[sin(nor/2@) - sin(npo/2@)] is a meromorphic 
function with a single pole p = ‘po in fi, @@), *g(a) are regular in fi and meromorphic 
in C functions determined by 

*/(or) = *e(a + Q + X I 2  - 0+)*& - @ - n / 2  + 0-1 

x w a  + a-  ~ / 2  + e+)wa  - Q + ~ / 2  - e-) 
and qg(a) is the, same as @f with changing 0 by x .  Here, we have introduced notations 
sin& = 06, sin;li = l /u& with Im(Q t 0, Im(x+) > 0, Re(&) t 0, Re&) > 0 and 
*e is Maliuzhinets function, defined as the solution of functional equation (Bernard 1987) 

@@(a + 2@)/@@(0l - 2@) = cot(a/2 + 7r/4). 



L186 Letter to the Editor 

We seek for thc regular functions c, t in the form of series 

Substituting (7), (8) into (6) and equating the terms of the same power of I ,  we have the 
following recurrent system 

Due to the new unknowns e@), <(or) we have obtained recurrent functional equations (9) 
with constant coefficients. i t  can be shown that &,(or f 9) -em(-. & 9) = O(l/sinor) 
and <,,,(or f 9) -(,(-a f 9) = O(l/sinor), lh(or)] + CO. Applying modified Fourier 
transformation (TWlin  1973, Bern+ 1987) with integration along the imaginary axis, 
one can write 

&(or) (Kl<m-l)(or) <,(a) = (Kztm-l)(~r) m > 1 (10) 

where 

(11) 

where U + (or, z) = sin(xa/29)/Icos(nor/2@) - sin(xz/29)]. It is useful to mention 
that we have obtained the regular functions &(or), <,,,(a) in l?, satisfying the conditions 
e,,,(%) = 0, &(%) = 0, m > 1. This property guarantees that the residues of f(a) and 
g(or) in the pole v, = ~0 produce accurate values of E; and H;. 

Now we are ready to investigate convergence of the series (8). Let us consider 
Banach space &IT) that is the line& space of regular functions bounded in the strip 
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n' = { a d ,  IRml < 
operators Kl,z are the linear bounded operators in A(n'), l[K1,2ll < Cl,z and 

+ 81 for any small S > 0 with the norm 11$[1 = supurn, I$(or)l. The 

lltmll < C1115m-111 llt11 < Czll$,,,-~Il m 2 1 (12) 

where the estimations (12) can be easily obtained from (lo), (11). The constants C1, Cz 
are computed explicitly by means of the equalities (11). For the sake of compactness we 
omit the formulae for C1, Cz. We ought to mention only that Ct, CZ are proportional to 
the value E - la51 or c 4 ]&I respectively as it foIlows from (11). Therefore, for a weak 
anisotropy, when all or a22 are small and E << 1, we have CI = O ( E )  or Cz = O ( E ) .  
Inequalities (12) lead to estimations 

l l t l l  < const(CICz)m IICmll < const(CICz)m m 2 1 

that give a sufficient condition of uniform convergence in the strip lT' for the series (8) 

hC,C* < I .  (13) 

The inequality (13) is valid for any anisobopy and small h. When h + 1 - 0 the condition 
(13) leads to 

c,c* < 1. (14) 

The sufficient condition (14) can he guaranteed, for example, when CZ = O(E) ,  E < I, that 
is for weak anisotropy of material coating of the wedge. So, the series (8) are converging 
for weak anisotropy, but as is hoped the convergence holds in a more general case. Using 
convergence of the series (8) and taking into account (10) and (14), we get the system of 
h e a r  equations in.Banach space 

t = KI5 +Bo r = 4 5  +50 (15) 
, 

where K1, KZ are bounded operators. From the equations (15) one can get 

B = KlKzB +,KlJb + Bo 

5 = KzKiC + KzC + CO. (16) 

From the condition (14) it follows that K l K z  and KzKl are contracting operators with 
llKl KzlJ < 1. In other words, the converging series (8) (h = 1 - 0) arc'Neumann series for 
linear equations with conbacting operators in A(n'). It can be shown that equations (15). 
(16) are deduced independently upon perturbation procedure. When llK1 Kzll 2 1, Neumann 
procedure fails. In this case, one can reduce (5) to linear equations with bounded operator 
and prove that it is a compact operator (Kolmogorov and Fomk 1981). Therefore, we CA 
obtain linear equations of the second kind with a compact operator. Fredholm theory can 
be applied, and one can prove the existence of the solution, using its uniqueness, for any 
natural parameters of the problem. 

In the case of weak anisotropy (E (< l), we are restricted by the leading terms of 
Neumann series. For simplicity we consider E: polarized incident wave, so that .H; = 0 
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and = 0. Then, f@) = @f(or)u(or)h(or)(l+O(€')), = @E(or).(or)r~(l+o(€2)), 
where $l(a) = K1{o = O ( E )  and 50 = E g / @ E ( ~ ) .  For the leading terms we have 

E,@,rp) = &L @ E ( ~ + r p ) ~ ( ~ + r p ) E s / @ ~ ( r p o ) e x p ( - ~ ~ c o s ~ ) d ~ ( l  + O(&) 

f&(p,rp) = - @~(~+rp)u(or+(0)~l (~+~))exp(- - ik~cosor)d~(1+ W&). 
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(17) 

2 i i  S, 
The integral representation for E,@,  rp) is standard (Maliuzhinets 1959, Bernard 1987). 
The formula for HL determines admixtured polarization that arises due to the interaction of 
E, polarized wave with anisotropic phases. We have to consider meromorphic continuation 
of the function (,(or) on the strip IRwl < n + @ in the integrand (17). Meromorphic 
continuation of $,(or) = (Kl<,,)(or) on the strip lRe& < n + @ can be performed, using 
functional equations (9) (m = 1). or by means of the theory of S-integrals (Tuzhilin 1973). 

Let us compute the asymptotic representation of Hz when kp >> 1. We use the saddle 
point technique. Let @ 5 x/2 and n - @ < % < 4 that means iliumination of only one 
face of the wedge by the incident wave (figure 1). When the deformation of integration 
contour y into the steepest descent paths y1 through the saddle points fn (figure 2) is 
performed, "veral poles of the integrand (17) can be cap&ed. These poles are. the following 
U," = &2@ - 6- 9, U,". = -prt (n + @+e*), or: = -9 f (n + @+ x*). Using residue 
'theorem,"we obtain 

~ i ,  r: + >: + r: + + a) expc--ilrp cpsu) d ~ !  (18). 
. %I 

;wheE'r&, r: are the terms contributed by the pot.+ of integrand. The t e ~  r: = 
A," exp[i&p cos(@ + B* 7 rp)] (and aIso r:).npresent laky waves with comp1ex:phase 

~functions. It can .be shown that &e pole 
&,' ="2@.- <.b- (0 g& thrhgh the saddk point +s For & values of 9. So, we' 
have the situation,of coalescence of &e pole and a saddte poinc 'Ipstead'of non-uiifonn 
'representation (IS), using'tiie weil known prdcedrire (B&v~~~ov'.+ K i n k  im), o+cq 
obtain a'uniform one by 6 kymptotic formula 

Ifz' x exp(-ikpcos[2@ - 

For large. kp we neglect these waves.' 
, , , . .  

-. rpl)(-+f(2* -m)er(24 - m)) 
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meromorphic continuation of c1(a) on the strip I Real < n + 0, but for I Real c 4, we 
have 51 (a) = (K1 CO)@) that is a rapidly converging integral. Frenel integral determines 
the wave field behaviour in the transition region in the vicinity of the ray corresponding to 
Zap-(0 = nfrp. The second term in (19) has singularities due to the zeros of denominators, 
but the singularities cancel each other. Outside the transition region Frenel integral can be 
changed by asymptotics, and the wave field can be presented as a sum of an admixtured 
reflected wave and a cylindrical wave, spreading from the edge when o, > 24, - o,o - ic, 
and by a cylindrical wave only when o, c 24, - (00 - x .  
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