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LETTER TO THE EDITOR

On one approach to an electromagnetic diffraction problem in
a wedge shaped region

M A Lyalinov

Department of Mathematical Physics, Institute of Physics, University of St Petersburg,
198904, Russia

Received 17 January 1994

Abstract. An electromagnetic diffraction problem in a wedge shaped region is reduced to
a system of coupled functional equations by means of Sommerfeld integrals. Anisotropic
impedance boundary conditions are satisfied on the wedge’s faces. This system of functional
equations is solved by regular perturbation method. It is shown that for weak anisotropy
the solution is presented by converging series which are Neumann recurzent series for linear
equations with contracting operators. In a general case, the problem is reduced to linear equations
with compact operators. The wave field asymptotic is computed for the region outside the vicinity
of the edge of the wedge.

The problem of diffraction by a perfectly conducting wedge was solved in classical works
of Sommerfeld. Malivzhinets (1959) studied diffraction by imperfectly conducting wedges
and proposed regular solving procedure via reduction to functional equations which are
equivalent to scalar Riemann problem for analytic functions (Senior 1939, Williams 1959).
Recently specific interest to diffraction by coated wedges and smooth surfaces has arisen due
to applications of such models in radiophysics and acoustics (Tuzhilin 1973, Bernard 1987,
Senior 1992, Buldyrev and Ljalinov 1992). We study the problem of diffraction by a wedge
with anisofropic face impedances (figure 1). It cannot be solved exactly in the general case,
since it is equivalent to matrix Riemann problem for analytic vectors. However, we develop
an effective approach to the problem which can also be applied in different problems in
wedge shaped regions. Therefore, we study this problem as a simple non-trivial example
of applying the proposed approach which has more general meaning for the investigation
of the wave field in wedge shaped regions.

Let harmonic electromagnetic plane wave with e~ time dependence, which is
suppressed in this letter,

E} = Egexp(—ikocos(d — o)) Hi = Epexp(~ikocos($ —¢o)) (1)

be incident on a wedge with anisotropic impedance boundary conditions (Kurushin et af

1975)
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Figure 1. Diffraction of a plane wave by a wedge.

where cylindrical coordinates (g, ¢, z) are introduced, and z axis directed along the edge
{figare 1). The signs (&) in (2) comespond to ¢ = ¢, respectively, and matrix
A= {a,—k}f_k=1 is the matrix of surface impedances which are computed via dielectric and
magnetic constants of the anisotropic coatings (Kurushin et ¢l 1975). The components E;,
H, are independent on z coordinate and can be determined as the solutions of stationary
wave equations.

AE, +kE, =0 AH, +E*H, =0 k= feouow- (3)

The other components of electromagnetic field are expressed explicitly from Maxwell
equations, if E, and H, are known. We seek solutions of wave equations (3) in the form
of Sommerfeld integrals

1 .
Ep,9)= Tl [ gl + @) exp(—ikp cos @) der
¥

1 )
Hip,p) = Tl f fle + ¢) exp(—ikp coser) da @
4

where y 15 well known Sommerfeld double loop contour (figure 2). We have to add
Meixner condition at the edge (¢ — 0) and special condition at infinity which is more
convenient formulated for spectral functions f, g. The representations (4), satisfying wave
equations (4), are substituted into the boundary conditions (2), and, using Malivzhinets
theorem, we obtain

Esina(fle @)+ f(~a®@)) + a3 (Fl@+¢) — Fl—a£¢))
= £ ia}/eo/uosina(gle £ ¢) + g(—a £ )
+ a3 sine(g(er = 6) + g(— @ $)) + (gla £ ¢) — g(—a £ ¢))
= ra3yro/eo(fl@ @) — F(—aE¢)) ' 6)

where we have voluntarily introduced the parameter A(JA| < 1), which must be equal
to unit in resulting formulae. The meaning of the introduced ariificial parameter is to
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develop perturbation methods to treat the functional equations (5). The system (5) has to
be supplemented by conditions for spectral functions which are as follows:
_ e fla) — Ef/{e — ¢o), glar) — Eg/(e — ¢p) are regular and bounded in the strip
M = {eeC : |Re(w)| < ).

e Spectral function f(x) satisfies condition

| f () = f(Fico)| < exp(=8|Im(e)]) 0<s<1 ' (6)

when oI, |Ima| — co. For the function g{) we have the same inequality.
o f(—ioo) = —f(ioc), g(—ioo) = —g(ic0). )

It can be shown that f(—icc) = iH,(0,9)/2, g(—ico) = iE (0, ¢)/2. So flu), g()
are regular and bounded in IT with fixed residues Ef, E, in the simple pole ¢ = ¢ to
reproduce the incident plane wave E;, H;. The initial problem is reduced to the problem
(3), (6) for regular functions. Using conformal mapping, one can show that the system
of functional equations is transformed to Riemann matrix problem with discontinuous
coefficient. However, we shall use another approach to solving (5), which, of course,
is equivalent to solving the Riemann problem for analytic functions.

-2n 0 TP o Re

Figure 2. Integration contour y and steepest descent paths .

We introduce new unknown functions £(x), £ (e) by equalities
@)= t@o@se @) =y@oi@ D
where o(x) = 7/(29)cos(myy/2®)/[sin(ma/2P) — sin(wep/2P)] is a meromorphic

function with a single pole ¢ = ¢p in IT, ¥y (e), ¥, (o) are regular in [T and meromorphic
in € functions determined by

Yr() = Yol + @ + /2 — 6, ol = & —7/2+6_)
XYgpla+®—mw/2+0 Wola— D+ n/2—-0)

and v, () is the same as ¥y with changing @ by x. Here, we have introduced notations
sinfs = a3, sin x= = 1/aj; with Im(8x) > 0, Im(x+) > O, Re(fs) > 0, Re(x=) > 0 and
Ve is Maliuzhinets function, defined as the solution of functional equation (Bernard 1987)

Yolo + 29) o la — 20) = cot(e/2 + /4).
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We seek for the regular functions &, ¢ in the form of series
E=Y MEn(@) L= A"Ln(@). ®
m={ m=0

Substituting (7), (8) into (6) and equating the terms of the same power of A, we have the
following recurrent system

Enla £ &) — Eu(—0 + B) = k(@) [ Ina(eE®) | na(mat®) ]

(sine £ sin yu) = (—sina &= sin ys)

fm (@t ®)  fpa(—atd) ] (9)
(sinet =sinfy)  (—sinw £sinéds)

Emla £ B) — En(—0o £ ) = k() [

&y = E¢/vry (0o} S0 = Ep /¥y (90) m>1

where

k;':(ot) = aﬁ sinoh. (o) k;h(a) = :I:a,d;_ sin v/ s (ct)

Yo (o &= ®)(siner = sin yy)

hafo) = 'ﬁff(“' =+ ®)(sinor £ sin 6y.)

Due to the new unknowns & (e}, £ () we have obtained recurrent functional equations (9)
with constant coefficients. It can be shown that £, (& =& &) — &, (~a¢ £ ¢} = O(1/sine)
and &y (o = ) — Ep(—a £ ) = O(1/sinw), |Im(e)] — oo. Applying modified Fourier
transformation (Tuzhilin 1973, Bernard 1987) with integration along the imaginary axis,
one can write

En(@) = (Kidm-1)@)  &n(@) = (Kobn-1)@)  m21 (10)
where
(K1t)z) = STJ f do {k;"(oz)(m(a, 7)o (e, qau))[(si:ia: S:l)x+) F :i(n_::s?;)x‘z‘)]
— k7 (@) (o= (o, 2) — o (%, @) [ (S.u: ;a-_s:)x_) = ;(n_ :ﬂ — S:I)x_)] }
(Kat)(@) = §EE da{k;(a)mca, — qﬂo))[ (si;ff: 3@ - — s sri?&,)]
— kg (@) (o, 2) — o~ (e, o)) [(six: ia—"si)e_) - :1(; o‘: = ;:)9_)] }
(11)

where o * (&, 2) = sin{ma/2®)/lcos{me/2®) — sin(zz/2®)). It is useful to mention
that we have obtained the regular functions &,{(a), £ {e) in I, satisfying the conditions
En(po) = 0, &m(wo) = 0, m = 1. This property guarantees that the residues of f(z) and
g(a) in the pole ¢ == gy produce accurate values of E; and H;.

Now we are ready to investigate convergence of the series (8). Let us consider
Banach space A(IT)) that is the linear space of regular functions bounded in the strip
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IV = {weC, |[Rear| < P + 3} for any small § > 0 with the norm [|£] = sup, . [E(a)|. The
operators K3 are the linear bounded operators in A(IT), | Ky 2| < €2 and

1€mll < Cillim—1l Hemll < Callém—1l mz1 (12)

where the estimations (12) can be easily obtained from (10), (11). The constants C;, C»
are computed explicitly by means of the equalities (11). For the sake of compactness we
omit the formulae for Cy, Cz ‘We ought to mention only that Cy, C> are proportional to
the value € ~ iau] or € ~ |ai,| respectively as it follows from (11). Therefore, for a weak
anjsotropy, when a;; or as; are small and € < 1, we have C; = O(¢) or C; = O{e).
Inequalities {12} lead to estimations

{m Il < const(C1C2)™ Im 1l < const(CyC2)" m21
that give a sufficient condition of uniform convergence in the strip IT" for the series (8)
ACIC <1 (13)

The inequality ( 13) is valid for any anisotropy and small A. When A — 1 — 0 the condition
(13) leads to

C;Cg < 1. (14)

The sufficient condition (14) can be guaranteed, for example, when C; = O(¢), ¢ < 1, that
is for weak anisotropy of material coating of the wedge. So, the series (8) are converging
for weak anisotropy, but as is hoped the convergence holds in a more general case. Using
convergence of the series (8} and taking into account (10) and (14), we get the system of
linear equations in Banach space :

E=Kil+4% {=KE5+hH ' ‘ (13)
where K, K are bounded operators. From the equations (15) one -can get

§ =K1Kk +Kifa+5o
¢ = KK { + Kabo + fo- (16)

From the condition (14) it follows that X1 K> and K,K) are contracting operators with
I X K2) < 1. In other words, the converging series (8) (A = 1 —0) are "Neumann series for
linear equations with contracting operators in A(IT'). It can be shown that equations (15},
(16) are deduced independently upon perturbation procedure. When [|K; K3 || = 1, Neumann
procedure fails. In this case, one can reduce (5) to linear equations with bounded operator
and prove that it is a compact operator {Kolmogorov and Fomin 1981). Therefore, we can
obtain linear equations of the second kind with a compact operator, Fredholm theory can
be applied, and one can prove the existence of the solution, using its uniqueness, for any
natural parameters of the problem.

In the case of weak anisotropy (¢ <« 1), we are restricted by the leading terms of
Neumann series. For simplicity we consider E. polarized incident wave, so that H =0
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and E; = 0. Then, f(x) = ¥r(e)o (@& @1+ O€?), glo) = Yoo (@) io(l+ O(ey),
where &1(a) = X o = O(¢) and & = E, /v, (). For the leading terms we have

1 .
Ep,0) = 5o f V(@ + )0 (@ + 0)Ea /sy (00) exp(—ikp cos ) dar (1 + O(e?))
¥
an
Holp,9) = 5 f V(e + 0o (e + )@ + @) exp(—ikp cose) dax (1 + O(e2)).
Y

The integral representation for E,(p, ¢) is standard (Maliuzhinets 1959, Bemard 1987).
'The formula for H, determines admixtured polarization that arises due to the interaction of
E, polarized wave with anisotropic phases. We have to consider meromorphic continuation
of the function & (w) on the strip |Rex| < 7 4+ P in the integrand (17). Meromorphic
continuation of & (&) = (K{o)(e) on the strip |Rex| < 7 + ¥ can be performed, using
functional equations (9} (m = 1), or by means of the theory of S-integrals (Tuzhilin 1973).

Let us compute the asymptotic representation of H, when kp 3> 1. We use the saddle
point technique. Let ® > 7/2 and w — ¢ < ¢y < & that means illumination of only one
face of the wedge by the incident wave (fignre 1). When the deformation of integration
contour p into the steepest descent paths y; through the saddle points +a (figure 2) is
. performcd several poles of the integrand (17) can be captured These poles are the following

=220 —go—@, 07 = —pk(x + ®4-0%), of = —p % (r + P+ x*). Using residue
'theorem we obtain

H, = r¥ + ety f1 Fla + dyexpl—ikpcosa)da (18)
Jy
where ry,, r& are the terms contributed by the poles of integrand. The terms '"a =

Ag explikp cos(® + 8% )] (and also r"’) represent leaky waves with complex- phase
,functions. For large ko we neglect the.sc waves. It can be shown that the pole
ot = 20— ¢y — P goes through the saddle point G for certam valoes of ¢. So, we
lhavc the situation of coalescence of the pole and a saddle point. ‘Instead ‘of non-uriiform
representation (18), using the well known procadure (Borovikov and Kinber 1978), onc can
obtain a uniform one by ¢ asymptofic formuia

H, = exp(—ikp cos[2® — o — ]~ Y7 (2% ~ ¢0)£1 (20 ~ pu))
. . [20—p—¢ eetin/A [ g (28— go)Ey (20 —
xF [\/%cos [#” + Inckp | ‘gfé{os'{_(ztb%—)i(-z- 500)/?;)
_ 7/ (2®) cos(meo /28N (7 + )i + ) } gitotin/t
2sin[(z /4D)x + ¢ — go)Yeos[(/ADMT + ¢ + o)l ] . 2mkp
T mfQ®)cos(mon/ 2Py (0 ~ % )iy = 7)
2sinf(z /4®)(p — 7 — go)] cas[(w /4 Ke = = + go)l ;

where F(x) is Frenel integral

F(x')‘— f’f ﬂzdt

The vahie £ Q2% — rpo) is coi:nputcd explicitly, using. functionak equanons ) (m'=
and the condition & (w0) = 0. The computations- of & {p + ) exploit the meutlomd

9)
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meromorphic continuation of & {e) on the strip |Ree| € ® + &, but for |Rec| < @ we
have §(a) = (Kjtp)(er) that is a rapidly converging integral. Frenel integral determines
the wave field behaviour in the transition region in the vicinity of the ray corresponding to
2% —¢ = m +¢. The second term in {19) has singularities due to the zeros of denominators,
but the singularities cancel each other. Outside the transition region Frenel integral can be
changed by asymptotics, and the wave field can be presented as a sum of an admixtured
reflected wave and a cylindrical wave, spreading from the edge when ¢ > 2% — g — =,
and by a cylindrical wave only when ¢ < 2@ — ¢y — 7.
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